

THE NEUTRAL VOLATILES OF *BOENNINGHAUSENIA ALBIFLORA*

TAKAYUKI SUGA, TSUYOSHI SHISHIBORI and SOLEH KOSELA

Department of Chemistry, Faculty of Science, Hiroshima University, Higashisenda-machi, Hiroshima 730, Japan
and

VIRENDAR KUMAR SOOD

Chemistry of Forest Products Branch, Forest Research Institute and Colleges, Dehra Dun, India

(Received 5 June 1974)

Key Word Index—*Boenninghausenia albiflora*; Rutaceae; chromenes; monoterpenes; sesquiterpenes.

Plant. *Boenninghausenia albiflora* Reichb. (Rutaceae). **Source.** India. **Uses.** Flea repellent [1]. **Previous work.** On dictamnin [2], bergapten [2], rutin [3], coumarin [4], and matsukaze lactone [5] from an EtOH extract of the leaves and stems and on an essential oil from the leaves [6,7].

Present work. The leaves and stems of *B. albiflora* were steam-distilled and the volatile oil obtained was chromatographed on silica gel with *n*-hexane, with gradually increasing EtOAc as eluant. Individual constituents were then further purified by preparative TLC and subjected to co-GLC, IR, UV, NMR and MS. The volatile oil was found to be composed of β -myrcene (1.4%), (estimated from the peak area on GLC), α -phellandrene (0.8), β -caryophyllene (3.8), cadinene (13.9), cadalene (3.2), caryophyllene oxide (16.3), spathulenol (11.3), 7-methoxy-2,2-dimethylchromene (4.0), and 6,7-dimethoxy-2,2-dimethylchromene (ageratochromene) (5.5).

β -Myrcene. $C_{10}H_{16}$; δ_{ppm} (CDCl₃) 1.57 and 1.67 (each s, 6H, C=C(Me)₂), 2.16 (m, 4H, C=C-CH₂), 4.92 (s, 2H, =CH₂), 5.0-6.4 (m, 3H, vinyl group). β -Caryophyllene. $C_{15}H_{24}$; δ_{ppm} (CDCl₃) 0.96, 0.98 (each s, 6H, gem-dimethyl), 1.57 (s, 3H, C=C-Me). IR spectrum was identical with that of an authentic sample. Cadalene. $C_{15}H_{18}$; ν_{max} (liq.) 1604, 1512, 873, 812, 748 (aromatic ring), 1382 cm⁻¹ (isopropyl); λ_{max} (EtOH) 229 nm (ϵ 45000), 282 (4500), 324 (490); δ_{ppm} (CDCl₃) 1.37 (d, *J* 7 Hz, 6H, -CH(Me)₂, 2.48 (s, 3H, phenyl-Me), 2.61 (s, 3H, phenyl-Me), 7.0-8.0 (m, 5H, aromatic ring H); picrate, m.p. 116-117° (lit. [8] 116°). α -Phellandrene and cadinene were identified by co-GLC. Caryophyllene oxide. $C_{15}H_{24}O$; m/e 220 (M⁺); ν_{max} (liq.).

1618, 890 (end-methylene), 1376, 1360 (gem-dimethyl), 3021, 1255, 865, 755 cm⁻¹ (oxirane ring); δ_{ppm} (CDCl₃) 0.96 [s, 6H, C(Me)₂], 1.17 [s, 3H, C(-O-CMe₂-)] 4.85, 4.95 (m, 2H, =CH₂). Spathulenol. $C_{15}H_{24}O$; m/e 220 (M⁺); ν_{max} (liq.) 3420 (OH), 3080, 1638, 890 cm⁻¹ (end-methylene); δ_{ppm} (CDCl₃) 0.6 (m, 2H, cyclopropane ring H), 1.08 [s, 6H, -C(Me)₂-], 1.27 [-C(OH)CH₃-], 4.68 (m, 2H, =CH₂). The 3,5-dinitrobenzoate [9], m.p. and mixed m.p. 145-146°. 7-Methoxy-2,2-dimethylchromene. $C_{12}H_{14}O_2$; m/e 190 (M⁺); ν_{max} (neat) 1640 (C=C), 1615, 1570, 1500 (benzene ring), 1025 cm⁻¹ (methoxyl); λ_{max} (EtOH) 279 nm (ϵ 5670), 304 (4630); δ_{ppm} (CDCl₃) 1.43 [s, 6H, O-C(Me)₂-], 3.82 (s, 3H, O-Me), 5.50 (d, *J* 10 Hz, 1H, 3-H), 6.30 (d, *J* 10 Hz, 1H, 4-H), 6.4-7.0 (m, 3H, benzene ring H). The physical data were identical with those of 7-methoxy-2,2-dimethylchromene isolated from the essential oil of *Ageratum houstonianum* [10]. 6,7-Dimethoxy-2,2-dimethylchromene (ageratochromene). $C_{13}H_{16}O_3$; m/e 220 (M⁺); ν_{max} (neat) 1640 (C=C), 1613, 1575, 1502, 750 (benzene ring), 1380, 1360 (gem-dimethyl), 1010 cm⁻¹ (methoxyl); λ_{max} (EtOH) 278 nm (ϵ 3580), 322 (6750); δ_{ppm} (CDCl₃) 1.40 [s, 6H, O-C(Me)₂-C], 3.78 (s, 6H, two O-Me), 5.45 (d, *J* 10 Hz, 1H, 3-H), 6.21 (d, *J* 10 Hz, 1H, 4-H), 6.40, 6.51 (each s, 2H, benzene ring H). Catalytic hydrogenation on PtO₂ gave a dihydro-derivative, m.p. 50-60°; δ_{ppm} (CDCl₃) 1.32 [s, 6H, O-C(Me)₂-C], 1.75 (t, *J* 7 Hz, 2H, 3-CH₂), 2.70 (t, *J* 7 Hz, 2H, 4-CH₂), 3.80 (s, 6H, two O-Me), 6.38, 6.55 (each s, 2H, benzene ring H). These data were identical with those of the chromene isolated from *Ageratum mexicanum* Sims. and *A. conyzoides* L. [11].

Acknowledgements—The authors are grateful to Professor R. C. Bowyer and Professor P. R. Jefferies, the University of Western Australia, for their kind gift of the derivative of spathulenol.

REFERENCES

1. Sood, V. K., Karnik, M. G., Sagar, V. and Sood, K. G. (1966) *Indian Forester* **92**, 295.
2. Ohta, T. and Miyazaki, T. (1958) *Yakugaku Zasshi* **78**, 1067.
3. Matsuno, T. and Amano, Y. (1962) *Kyoto Yakka Gakuho* **10**, 17.
4. Nayar, M. N. S., Bhan, M. K. and George, V. (1973) *Phytochemistry* **12**, 2073.
5. Miyazaki, T. and Mihashi, S. (1964) *Chem. Pharm. Bull. (Tokyo)* **12**, 1232.
6. Gupta, Y., Singh, N., Chauhan, R. N. and Baslas, K. K. (1970) *Indian Oil and Soap J.* 207.
7. Sood, V. K. (1972) *Parfuem. Kosmet.* **53**, 125.
8. Johnson, W. S. and Jones, A. R. (1947) *J. Am. Chem. Soc.* **69**, 792.
9. Bowyer, R. C. and Jefferies, P. R. (1963) *Chem. Ind.* 1245.
10. Kasturi, T. R. and Manithomas, T. (1967) *Tetrahedron Letters* 2573.
11. Alertsen, A. R. (1955) *Acta Chem. Scand.* **9**, 1725.

Phytochemistry, 1975, Vol. 14, pp. 309-310. Pergamon Press. Printed in England.

METHOXYLATED FLAVONES OF *FORTUNELLA JAPONICA*

SUNIL K. TALAPATRA, SWAPAN K. MUKHOPADHYAY, ANUP BHATTACHARYA and BANI TALAPATRA
Department of Chemistry, University College of Science, Calcutta 700009, India

(Received 18 May 1974)

Key Word Index—*Fortunella japonica*; Rutaceae; nobiletin; tangeretin; 5,7,8,3',4'-pentamethoxy flavone; sitosterol.

Fortunella is a small genus of evergreen shrubs or small trees, native of South China, cultivated throughout subtropical regions of the world [1]. *F. japonica* (Thumb) Swingle (Syn. *Citrus japonica* Thumb; round or marumi kumquat) and *F. margarita* (Lour) Swingle (Syn. *Citrus margarita* Lour, oval or nagami kumquat) are grown in India as ornamentals and for their fruit which are rich in pectin and excellent for marmalades and jellies [1].

F. japonica has been found to be a rich source of methoxylated flavones. The occurrence of acacetin-7-rhamnoglucoside in the fruits and petals of this plant has been reported earlier [2]. We now describe the isolation of nobiletin (**1**) [3], tangeretin (**2**) [4] and 5,7,8,3',4'-pentamethoxy flavone (**3**) along with sitosterol from the light petrol and CHCl_3 extracts of the leaves and twigs of *F. japonica*. The compounds were characterized from their spectral (UV, IR, PMR, MS) properties and by direct comparison (m.m.p., TLC, IR). Compound (**3**) was reported earlier from *Citrus aurantium* [5], *C. sinensis* [6] and *C. paradisi* [6]. Nobiletin (**1**) and tangeretin (**2**) were converted to the corresponding 5-desmethyl and completely demethylated compounds. The PMR and the mass

spectral characteristics of the above compounds, not reported earlier, are recorded in the Experimental.

EXPERIMENTAL

Extraction. Dried powdered leaves and twigs were soxhletted with light petrol (60-80°) and CHCl_3 respectively. The neutral fractions were chromatographed over silica gel (g.) and elution with solvent mixtures of increasing polarity yielded in succession sitosterol (mp and $[\alpha_D]$ of compound and acetate), nobiletin (**1**), tangeretin (**2**) and 5,7,8,3',4'-pentamethoxy flavone (**3**). The latter three compounds responded to the Shinoda test [7] for flavones.

The middle C_6H_6 eluates afforded on rechromatography nobiletin (yield 0.12%), in colourless crystals, m.p. 137-138° from light petrol- C_6H_6 mixture; $\lambda_{\text{max}}^{\text{EtOH}}$ 332 nm ($\log \epsilon 4.27$), 272 (4.01), 250 (4.04); IR: $\nu_{\text{max}}^{\text{KBr}}$ 1653 cm^{-1} (γ -pyrone $\text{C}=\text{O}$); PMR (60 MHz, CDCl_3 , δ): 7.73 (1H, dd, J 8.5 Hz and 2.0 Hz, H-6'), 7.57 (1H, d, J 2.0 Hz, H-2'), 7.13 (1H, d, J 8.5 Hz, H-5'), 6.73 (1H, s, H-3); 4.18 (3H, s), 4.11 (3H, s) and 4.03 (12H, s) for 6 OMe groups; MS m/e (% base peak): 402 (42, M^+), 387 (100, M^+-Me from 6-OMe), 240 (1.2, M^+-162 , RDA of γ -pyrone ring) [8], 225 (11.2, 240-Me), 197 (23.3, 225-CO), 162 (9.3% M^+-240). Found: C, 62.50; H, 5.51. $\text{C}_{21}\text{H}_{22}\text{O}_8$ requires: C, 62.6; H, 5.47%. Refluxing (**1**) with Conc. HCl -EtOH (1:1) for 6 hr gave in 60% yield the corresponding 5-desmethyl derivative, m.p. 144-145° lit.³, 145°; IR: $\nu_{\text{max}}^{\text{KBr}}$, 1667 cm^{-1} ; PMR (60 MHz, CDCl_3 , δ): 12.58 (1H, s, chelated OH at C-5), 7.59 (1H, dd, J 8.5 Hz and 2.0 Hz, H-6'), 7.43 (1H, d, J 2.0 Hz, H-2') 7.0 (1H, d, J 8.5 Hz, H-5'), 6.6 (1H, s, H-3); 4.12 (3H, s), 3.98 (6H, s) and 3.96 (6H, s) for 5 OMe groups; MS m/e (% base